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Most of the structural elements in a steel structure are subjected to bending moment and axial force simul-
taneously. In some elements, one of the two components is relatively small compared to the other. Yet, the
smaller component cannot be ignored due to the interactive behavior of the two components. Therefore, it
is not adequate to design the beam-column element as a beam or a column by ignoring one of the two load
components even if the ignored component is relatively small.
Most of the design codes use empirical interaction equations that are based on semi-experimental semi-
analytical results. Most of the design formulae adopted by the design codes do not explicitly account for
the geometrical imperfection.
This research aims at investigating the buckling behavior of steel beam-column elements for the sake of
developing an analytical model to calculate their ultimate resistance under axial compression and bending
moment. The analytical model will be based on Perry-type formulation, and it will account for the effect of
initial imperfection. The model will be validated by comparing its results with those obtained by the Finite
Element Non-Linear Elasto-Plastic analysis using ANSYS 5.4 program.
Finally, a simple but rational design method based on the model, will be introduced. This method can be
applied using a simple mathematical expression or charts and tables. The results of the developed design
method will be compared with the design method of the international codes of practice for design of steel
structures. On light of these comparisons, design recommendations are introduced.
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1. Introduction

Resistance and interactive buckling behavior attracted the attention
of many researchers over the last four decades, however, due to its im-
portance and complexity, this subject is still receiving the researchers’
interest.

In 1977, Kanachalani [14] investigated the in-elastic behavior of 82
steel beam-column. He developed the well-known bilinear interaction
equation that is being utilized by many international design codes.
The AISC (LRFD) design manual [2] is adopting this bilinear interaction
equation. Also, the Egyptian Code of Practice for Steel Design (LRFD)
[10] is utilizing this equation.

In 1985, Trahair [15] investigated the accuracy and applicability of
the design formulae utilized by the Canadian Standard. He developed
a simple computational procedure for estimating the in-plane
strength, which generally leads to more accurate prediction than
that of the code. He also developed two alternatives for estimating
the out-of-plane strength of beam-column.

In 1989, Geng-Shu and Shao-Fan [12] established an interactive buck-
ling theory for built-up beam columns which can be used to determine
the ultimate strength of the member taking account of various adverse
influences of imperfections (residual stress, member's and chords' initial
deflections and load eccentricity). They verified the applicability of the
proposed theory by the finite integral method.

In 2004, Aminmansour [3] introduced design aids including charts
and tables to facilitate the application of the AISC (LRFD) [2] interaction
equation. The proposed approach avoids the application of the iterative
technique followed to select the most appropriate steel section. Several
design examples have been given to explain the application of the pro-
posed design approach.

In 2004, Gonçalves and Camotim [13], examined the beam-column
design approach adopted by the Eurocode (EC3) [11], using thefinite el-
ement non-linear analysis utilizing ABAQUS program. They compared
the code design approach to the finite element analysis for different
loading and boundary conditions. They highlighted the sensitivity of
the code estimated strength to the Cm value compared to the FE analy-
sis. They concluded that the EC3 strength estimate is excellent for the
in-plane strength of members with arbitrary boundary conditions. For
low axial force, they concluded that the EC3 strength estimate is quite
conservative.

This research aims at investigating the interactive buckling behavior
in beam-column. Two types of interaction will be studied; the elastic
linear interaction and the non-linear interaction. The first type affects
the critical buckling modes and the critical buckling loads. The second
type affects the beam-column resistance. Mathematical models will be
developed to predict both the interactive buckling stress and the
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ultimate resistance. Finite Element analysis usingANSYSprogramwill be
applied to validate the results obtained from the mathematical models.
Eigen value analysiswill be used to verify the critical buckling interaction
mathematical model, and non-linear elasto-plastic analysis will be uti-
lized to validate the resistance estimation model. Finally, the developed
models will be used to establish a rational simple design method that
can be used to predict the ultimate resistance of beam-column structural
elements.

2. Critical buckling interaction

In general, the critical buckling load does not represent the strength
of members. In beam column members, the ultimate resistance is al-
ways below the critical buckling loads. However, investigating the crit-
ical buckling interaction still has its importance, because the critical
buckling loads will be required in estimating the member strength.

In a column of doubly symmetric cross section, there are three indi-
vidual buckling modes, flexural buckling about minor axis, torsional
buckling andflexural buckling about themajor axis. In singly symmetric
section, one of the two flexuralmodes interactswith the torsionalmode
producing the torsional-flexural mode reducing the number of individ-
ual modes to only two [1,8,16]. In beams there is only one overall buck-
ling mode; that is the lateral torsional buckling mode [5].

In the presence of axial load and bending moment, i.e., in a beam-
column element, the lateral torsional buckling mode under bending
moment initiates all the overall buckling modes of column, resulting
in a single buckling mode that has three degrees of freedom v(x),
w(x) and θ(x) as indicated in Fig. 1. The interactive buckling load
of the final mode is given by Trahair et al. [16]. The interactive crit-
ical buckling loads are related by the following expression:

Mcr

MLTz

� �2
¼ 1− Pcr

PEz

� �
1− Pcr

PEy

 !
1− Pcr

PT

� �
ð1Þ

Where;

Mcr and Pcr are the critical bucklingmoment and axial force respectively
MLTz is the lateral torsional buckling moment about Z-axis (minor

axis)
PEz, PEy are the critical buckling loads of the two individual Euler

modes about Z and Y axes respectively
PT is the torsional buckling critical load.
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Fig. 1. Beam-column boundary conditions, loads, axes and deformed shape.
Critical loads of the individual buckling modes are given by the
following expressions [16]:
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As per Ref. [16], the relation between the lateral displacement
(v(x)), and section rotation (θ(x)) is given by:

v xð Þ ¼ Mcr

PEz−Pcr
θ xð Þ ð3Þ

Where E is the modulus of elasticity, Iz and Iy are the minor and
major moments of inertia as shown in Fig. 1, G is the shear modulus, J
is the St. Venant torsional constant, Cw is the warping constant, L is the
beam length and γ is a geometrical factor; that equals (1− Iz/ Iy).

For the sake of comparison and better understanding of the critical
buckling interaction in beam-column Finite Element analysis has been
performed using ANSYS program [4], for two beams of different geome-
tries. The first beam is an I-section; that has the following dimensions:
bf=200mm, tf=16mm, dw=600mm and tw=8mm. The second
beam has also an I-section; that has the following dimensions:
bf=150mm, tf=12mm, dw=500mm and tw=10mm. Dimensions
of the two beams are selected to avoid local and distortional buckling
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Fig. 2. (a) Buckled shape for first section, L=6.0 m, Pcr
PEz

¼ 0:346; Mcr
MLTz

¼ 0:736

(b) Buckled shape for second section, L=6.0 m, PcrPEz
¼ 0:646; Mcr

MLTz
¼ 0:535.
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completely. In the vastmajority of the studied cases, the interactive buck-
ling mode was the first Eigen mode. Twenty nine bending moment–
normal force combinations have been considered for the first section
and twenty three combinations have been considered for the second sec-
tion. The considered cases include; pure axial compression, pure bending
moment, combined bending and compression and combined bending
and tension force. Sample of the buckled deformed shapes of the two
beams are shown in Fig. 2a and b respectively.

Fig. 3a and b shows a comparison between the results obtained
from the finite element analysis and the interactive critical buckling
stress predicted by Eq. (1).

It can be easily concluded from Fig. 3a and b that, there is an excel-
lent agreement between the critical buckling interaction predicted by
the analytical solution expressed by Eq. (1) and that shown by the finite
element analysis.

3. Non-linear interaction

Young's equation for imperfect columns was employed by Perry to
develop a mathematical model for calculating the ultimate resistance
of columns undergoing flexural buckling. This model is adopted by the
British Standards BS5950 [7] and the Euro Code EC3 [11]. The same
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Fig. 3. (a) Comparison between FE and theoretical solution for critical buckling interactio
(b) Comparison between FE and theoretical solution for critical buckling interaction for sec
conceptwas applied by references [6] and [9] to estimate buckling resis-
tance of beams undergoing lateral torsional buckling in presence of ini-
tial imperfection.

Applying the Perry formulation enables the designer to take the
effect of initial imperfection into account. Most of the design codes
neglect the effect of initial imperfection value, although it may have
a significant effect on the element resistance as will be illustrated in
this research.

To investigate the non-linear interaction of a beam-column structural
element in presence of initial imperfection, amathematicalmodelwill be
developed to account for the geometrical andmaterial non-linearity. The
model will be verified by comparison to the finite element non-linear
elasto-plastic analysis results. The proposed model is based on Perry-
type formulation that is based on Young's equation of imperfect column.
A rational design method based on the developed analytical model will
be introduced and its results will be compared with those of the design
codes of practice.

3.1. Mathematical formulation

For a simply supported beam-column with ends prevented from
twisting and free to warp, the angle of rotation, and accordingly
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ond section; bf=150 mm, tf=12 mm, dw=500 mm, tw=10 and L=6.0 m.
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the lateral displacement, varies sinusoidally along the beam length.
Fig. 1 shows the deformed shape of the mid-span cross section. For
an initial imperfection affine to the Eigen mode, the initial rotation
and lateral displacement can be expressed by the following equations.

θo xð Þ ¼ θo sin
πx
L

� �
ð4:aÞ

vo xð Þ ¼ vo sin
πx
L

� �
ð4:bÞ

Where θo and vo are the initial imperfection amplitudes atmid-span.
The relation between θo and vo at mid-span is given by Eq. (3).

Young's equation gives the relation between the applied load and the
lateral deformation for a columnundergoingflexural buckling. For beams
undergoing lateral torsional buckling Young's equation has been succes-
sively applied by [6,9] to predict the ultimate resistance of the beams.
However, this type of formulation can be applied on beam-column
with replacing the critical buckling loads of the individual modes by the
interactive buckling loads obtained from Eq. (1). According to Young's
equation, the relation between deformation at any load level and the ini-
tial deformation is given by:

θ ¼ θo
1−M=Mcr

ð5:aÞ

v ¼ vo
1−M=Mcr

ð5:bÞ

Where, θ and v are the rotation and lateral displacement at any ap-
plied load (M and P), and Mcr is the interactive critical buckling moment
as per Eq. (1). The relation between θ/v and the appliedmoment is shown
in Fig. 4.

The additional deformations (θ1 and v1) produce additional bend-
ing and warping stress, these deformations are given by the following
expression:

θ1 ¼ θ−θo ¼
M

Mcr−M
θo ð6:aÞ

v1 ¼ v−vo ¼
M

Mcr−M
vo ð6:bÞ

The additional rotation (θ1) produces an additional warping stress,
while the additional lateral displacement (v1) produces an additional
Fig. 4. Load–displacement relationship (Young's equation).
moment about the minor axis (Mzm), which in turn produces an addi-
tional normal stress. The additional Mzm can be given by the following
expression:

Mzm xð Þ ¼ −EIz
d2v1 xð Þ
dx2

¼ EIz
M

Mcr−M

� �
vo

π2

L2
sin

πx
L

ð7:aÞ

At mid-span Mzm has a maximum value that is given by the fol-
lowing expression:

Mzm ¼ EIz
M

Mcr−M

� �
vo

π2

L2
ð7:bÞ

Due to the translation of the cross section, the applied axial force
produces additional moments about the two principal axes of the
cross section. The values of these additional bending moments are
given by the following expression:

Mzp xð Þ ¼ P � v xð Þ ¼ P
Mcr

Mcr−M

� �
vo sin

πx
L

ð8:aÞ

Myp xð Þ ¼ P �w xð Þ ¼ P
Mcr

Mcr−M

� �
wo sin

πx
L

ð8:bÞ

Aswill be illustrated later, considering the additionalmoment about
the major axis (Myp) will result in complicating the final solution be-
cause it results in a third order equation. On the other hand ignoring
this moment relatively simplifies the final expression. It has been no-
ticed that the effect of this component is minor and its contribution to
the final ultimate load is less than 1%. That is due to two reasons, the
first is the relatively small value of wo compared to vo, and the second
is the fact that this moment is about the major axis, and accordingly it
will be divided by the major section modulus resulting in a very small
stress component. Therefore, it was decided to omit this component
from the final expression of the ultimate resistance.

The additional rotation (θ1) produces an additional normal warping
stress. This stress has maximum values at the outside of flanges. For the
rotation of Fig. 1, the left side of the top flange and the right side of the
bottom flange will have compressive stress. The other two corners will
have tensile stress as shown in Fig. 5. The maximum value of the warp-
ing stress at mid-span is given by the following expression [6]:

σw ¼ π2E
L2

θ1
dw
2

bf
2

¼ π2E
L2

dw
� bf
4

M
Mcr−M

� �
θo ð9Þ

Where; dw and bf are the beam depth and width respectively.
The additional bending moment given by Eqs. (8.a) and (8.b), will

produce additional axial stresses that are given by the following expres-
sions:

σzm ¼ Mzm

Zz
ð10:aÞ

σzp ¼ Mzp

Zz
ð10:bÞ

The additional stresses given by Eqs. (9), (10.a) and (10.b) should be
added to the stress produced by the applied loads (P and M). This will
increase the stress at some corners and reduce it at the others around
the section. Fig. 5 shows the stress distribution due to the applied
loads and due to the additional straining actions. For initial imperfection
affine to the deformed shape shown in Fig. 1, all stress components at
the left corner of the upper flange will be compressive, accordingly fail-
ure will take place first at this corner.

In this research the first yield criteria will be adopted as a failure
criterion. This concept has been applied by many researchers, e.g.,
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Fig. 5. Stress distribution due to applied and additional straining actions.
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references [6,9]. According to this concept, the ultimate resistance is
represented by the load that causes first yield around the cross section.
That means, the ultimate loads (Pu and Mu) are those loads that cause
the first yield to take place at the point of maximum stress. From
Fig. 5, the total stress at the left-hand-side corner of the top flange
should be equated to the material yield stress to obtain the ultimate re-
sistance. Applying this concept leads to the following expression:

σy ¼ σM þ σP þ σw þ σzm þ σzp ð11Þ

From Eq. (11), the following expression can be developed;

Mu

Zy
þ Pu

A
þ π2E

L2
dw� bf

4
Mu

Mcr−Mu

� �
θo þ

þ EIz
Zz

Mu

Mcr−Mu

� �
vo

π2

L2
þ Pu

Zz

Mcr

Mcr−Mu

� �
vo ¼ σy

ð12Þ

Where, Zy and Zz are the modulii of section about the major and
minor axes respectively. For an eccentricity (e), Pu can be replaced
by Mu/e. Multiplying both sides of Eq. (12) by Zy, and rearranging
the terms of the equation, result at the following expression:

μ �M2
u− Mo þ μ þ η � voð ÞMcrð ÞMu þMo

�Mcr ¼ 0 ð13Þ

Where: μ and η are geometrical parameters given by:

μ ¼ 1þ Zy
A � e ð14:aÞ

η ¼ Zy
e � ZZ

þ PEz� Zy
Mcr

� Zz
þ bf � PEy PEz−Pcrð Þ

2M2
cr

ð14:bÞ

vo is the initial lateral imperfection amplitude at mid-span, Mu is the
ultimate moment capacity of the beam-column element, Mo is the
yield moment about major axis=Zy*σy, and Mcr is the interactive
critical buckling moment obtained from Eq. (1). Obtaining Mu from
Eq. (13) for a certain eccentricity, then Pu can be calculated. The ulti-
mate bending moment can be obtained from Eq. (13), according to
which the ultimate bending moment can be given by:

Mu ¼ 1
2μ

Mo þ μ þ η � voð ÞMcr∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mo þ μ þ η � voð ÞMcrð Þ2−4μMo

�Mcr

q� �
ð15Þ

Pu ¼ Mu

e
ð16Þ

If the additional moment about the major axis (Myp) given by
Eq. (8.b) was considered in the mathematical formulation was going
to be more complicated, and Eq. (13) was going to be a third order
equation. As clarified earlier the effect of this term to the final ultimate
resistance was found to be minor.

3.2. Finite element non-linear analysis

ANSYS Finite Element Program [4] is used as a numerical tool to ver-
ify themodel developed in this research. Analyses have been carried out
for the second section, for different level of initial imperfections. Four-
noded thick shell element is used in all the FE analyses in this research.
The number of elements in the flanges is 4, and 6 elements are used for
theweb. The number of elements along the beam length is 30, as shown
in Fig. 2b. The boundary conditions are chosen to verify the simply sup-
ported conditions, i.e., the beam ends are prevented from translation in
Y and Z-directions and rotation about the X-axis. Warping and rotation
about Y and Z axes at the beam ends are allowed. The initial imperfec-
tions for all the studied cases were chosen to be affine to the first
Eigen mode (interactive mode between lateral torsional and flexural
modes). Different eccentricities (e) were studied from zero (pure axial
force) to infinity (pure bending). Two different values of initial imper-
fections have been considered vo=L/1000 and vo=L/2000.

Fig. 6a shows the deformed shape obtained from the finite ele-
ment non-linear elasto-plastic analysis for the second section, with
L=6 m for initial imperfection vo=L/2000. This figure illustrates
the deformed shape at first yield and during the post-buckling

image of Fig.�5
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Fig. 6. (a) Deformed shape of the second section, L=6 m, vo=L/2000=3 mm, e/dw=0.5. (b) Deformed shape of the second section, L=6 m, vo=L/1000=6 mm, e/dw=0.5.
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stage. Fig. 6b shows the deformed shape of the same beam, with
vo=L/1000.

In the next section, results of the analytical model developed in this
section will be compared with those obtained by the finite element
non-linear elasto-plastic analysis. To verify the developed model, ulti-
mate resistance, load–displacement curves and stress distribution at
first yield around the cross section obtained by the model will be com-
pared to the corresponding results obtained from ANSYS.
4. Results and comparisons

Eqs. (15) and (16) have been applied to obtain the ultimate resistance
for beam columns of I-sections. The equations have been applied for dif-
ferent values of initial imperfections, that are vo=0, L/2000, L/1000, and
L/500, the corresponding value of θowas estimated fromEq. (3). Different
eccentricities ranging fromzero (axially loaded columns) to infinity (pure
bending) were investigated. Sixteen finite elements non-linear elasto-
plastic analysis were performed for vo=L/2000 and L/1000, and with
e/dw=0, 0.08, 0.25, 0.5, 1.0, 1.67, 16.7, and infinity.

Fig. 7a and b shows comparisons between the bending moment-
displacement and axial force–displacement curves obtained from
Eq. (5.b) and those obtained from the finite element non-linear analysis
for initial imperfection of L/2000 and e/dw=0.5. Fig. 8a and b shows the
same comparison for an initial imperfection of L/1000 and for the same
value of eccentricity.

Fig. 9 shows a comparison between the interaction diagram
obtained from the developed model (Eqs. (15) and (16)), and the re-
sults obtained from the finite element analysis for different values of
initial imperfections.

Fig. 10a shows a comparison between the stress distribution
around the cross section obtained from the mathematical model
and those obtained from the finite element analysis at first yielding
for initial imperfection vo=L/2000 and eccentricity e/dw=0.5.

Fig. 10b shows a similar comparison between the mathematical
model and the finite element non-linear elasto-plastic analysis at first
yield for initial imperfection vo=L/1000 and eccentricity e/dw=0.5.

The stress distribution obtained by the analytical model is based
on Eqs. (9) to (11) that are illustrated in Fig. 5.

It can be noticed from Figs. 7 and 8, that the lateral displacement–
load relationship is well predicted by the developed model compared
to the same relations obtained from the finite element analysis. Load–
displacement relations obtained from both solutions are almost coinci-
dent until thefirst yield or ultimate load point, where the theoretical re-
lation continues approaching the critical buckling load and the
numerical relation starts the unloading stage. This conclusion is applica-
ble to all studied cases.

FromFig. 9, it is clear that the strength and interaction curve predicted
by the developed analytical model agree well with the interactive
strength obtained from the finite element non-linear analysis for all the
investigated eccentricities and initial imperfections. It can be also noticed
that, themagnitude of initial imperfection has aminor effect to the inter-
active curve (relation between Mu/Muo and Pu/Puo). However, that does
not mean that the initial imperfection is of insignificant effect, because
it is still affecting the values of Muo and Puo themselves. For example, for
e/dw=0.5, for initial imperfections of 0, L/2000, L/1000, L/500, the ulti-
mate load ratios are Mu/Muo=0.534, 0.528, 0.522 and 0.512 and
Pu/Puo=0.647, 0.626, 0.616 and 0.606 respectively. As mentioned, the
initial imperfection values still have significant effect on the ultimate
loads Muo and Puo, where for the same level of imperfections, Mu=144,
125, 112 and 94 kNm and Pu=391, 346, 312 and 262 kN respectively.

From Fig. 10a and b, it can be noticed that the stress distribution
around the beam cross section predicted by the developed analytical
model is in a good agreement with the distribution obtained by the



0

50

100

150

200

250

300

0 20 40 60 80 100

P 
(k

N
)

ANSYS

Equation 5.b

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

M
 (

kN
.m

)

Mid-Span Lateral Displacement (mm)

Mid-Span Lateral Displacement (mm)

ANSYS

Equation 5.b

a

b

Fig. 7. (a) Moment–displacement curves for vo=L/2000, e/dw=0.5. (b) Force–
displacement curves for vo=L/2000, e/dw=0.5.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
u/P

uo

Mu/Muo

Analytical  model (vo=0)

Analytical  model (vo=L/2000)

ANSYS (vo=L/2000)

Analytical  model (vo=L/1000)

ANSYS (vo=L/1000)

Analytical  model (vo=L/500)

Fig. 9. Comparison between the interaction diagram obtained from the developed model
and finite element non-linear analysis (bf=150 mm, tf=12mm, dw=500 mm, tw=10
and L=6.0 m), Muo=Pure bending ultimate capacity (beam), Puo=Pure axial ultimate
capacity (column).

177A.B. Badawy Abu-Sena et al. / Journal of Constructional Steel Research 71 (2012) 171–181
Appendix (B) B-8
finite element analysis. For all studied cases, the predicted points of
first yield at the two methods of analyses are the same.

Therefore it could be deduced that, the developed model predicts
accurately the interactive ultimate resistance, the force/moment–
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Fig. 8. (a)Moment–displacement curve for vo=L/1000, e/dw=0.5. (b) Force–displacement
curves for vo=L/1000, e/dw=0.5.
displacement relationship and the stress distribution around the
cross section compared to the finite element non-linear elasto-plastic
analysis. The analytical model takes account of the effect of initial im-
perfection. Therefore this model can be used as a rational simple design
method for estimating the ultimate resistance of beam-column struc-
tural elements. Results of the developed design method will be com-
pared to the design rules adopted by the different codes of practice in
next section.

5. Proposed design method and design codes

5.1. AISC (LRFD), 2005 and ECP (LRFD), 2008

The Egyptian Code of Practice (ECP) (LRFD), 2008 [10] adopted the
same concept and even the same interactive equations used by the
AISC (LRFD), 2005 [2]. The two codes adopted a bilinear interaction
equation to represent the relation between ultimate moment and
normal force. According to the two codes, the interaction equation
is given by the following expression:

Pu
ϕPn

þ 8
9

Muy

ϕbMny
þ Muz

ϕbMnz

 !
≤1:0 for

Pu
ϕPn

≥ 0:2 ð17:aÞ

Pu
2ϕPn

þ Muy

ϕbMny
þ Muz

ϕbMnz

 !
≤1:0 for

Pu
ϕPn

b 0:2 ð17:bÞ

Where, Pu, Muy and Muz are the ultimate axial force and bending
moments about the two principal axes, Pn, Mny and Mnz are the nom-
inal capacities (including flexural and lateral torsional buckling ef-
fect) of the element in pure axial compression and pure bending
respectively, and ϕ and ϕb are the resistance factors for axial com-
pression and pure bending. AISC and ECP adopts a value of 0.9 for
ϕb, while for ϕ the LRFD uses a value of 0.9, and the ECP uses a
value of 0.85.

5.2. BS5950, 2002

The British Standard BS5950, 2002 [7] adopts many interactive
formulae for the design of beam-column structural elements. The
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Fig. 10. (a) Comparison between stress distribution obtained by analytical solution
and finite element analysis (vo=L/2000, e/dw=0.5), Pu/Puo=0.63, Mu/Muo=0.53.
(b) Comparison between stress distribution obtained by analytical solution and finite
element analysis (vo=L/1000, e/dw=0.5), Pu/Puo=0.61, Mu/Muo=0.52.
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first formula is to check the cross section capacity. For a compact sec-
tion, this formula is given below:

Pu
Py

þMuy

Mcy
þMuz

Mcz
≤ 1:0 ð18:aÞ

The other formulae are to check the buckling capacity in and out of
plane. A simplified general method and a more-exact method for I and
H sections to verify the section buckling capacity. According to the
more-exact method, the following verifications should be performed:

Pu
Pcy

þmyMuy

Mcy
1þ 0:5

Pu
Pcy

 !
þ 0:5

mzyMuz

Mcz
≤ 1:0 For major axis Yð Þ buckling axisð Þ

ð18:bÞ

Pu
Pcz

þmLTMLT

Mb
þmzMuz

Mcz
1þ Pu

Pcz

� �
≤ 1:0 For lateral torsional bucklingð Þ

ð18:cÞ

myMuy

Mcy

1þ 0:5 Pu
Pcy

� �
1− Pu

Pcy

� � þmzMuz

Mcz

1þ Pu
Pcz

� �
1− Pu

Pcz

� � ≤ 1:0 For interactive bucklingð Þ ð18:dÞ

Where; my, mz, mzy, mLT are the bending moment shape factors
that equal 1.0 for uniform bending moment, Py, Pcy and Pcz are the
squash axial load, and buckling capacities about Y and Z axes respec-
tively, and Mb, Mcy and Mcz are the lateral torsional buckling moment
and bending capacities about Y and Z axes respectively. In our case,
for the sake of comparison, Eq. (18.c) that covers the interaction
between lateral torsional and minor axis flexural buckling will be
applied.

5.3. Euro Code EC3 1996

The Euro Code E3, 1996 [11], adopts three criteria to estimate the
design strength of beam columns. The first criterion is the cross sec-
tion strength, that is covered in Section 5.4.8, and concerned with
the cross section shape, manufacturing, and the presence of bolts
hall. For an I-section, this criterion does not govern the beam-column
design. The other two criteria cover the beam-column bending and
buckling strength. According to Section 5.5.4 of the EC3 code, for
class 1 and 2 sections (not slender in local buckling), the following
two criteria must be satisfied

NSd

χmin A fy=γM1
þ Ky My:Sd

Wpl:y fy=γM1
þ Kz Mz:Sd

Wpl:z fy=γM1
≤ 1:0 ð19:aÞ

NSd

χz A fy=γM1
þ KLT My:Sd

χLT Wpl:y fy=γM1
þ Kz Mz:Sd

Wpl:z fy=γM1
≤ 1:0 ð19:bÞ

Where; NSd, My.Sd, Mz.Sd are the ultimate straining actions on the
structural elements, χmin is the smaller value of χy and χz. χy and χz
are buckling reduction factors about Y and Z axes respectively, these
factors are given below. γM1 represents the resistance factor, fy is
the material yield stress, A is the cross section area, Wpl.y, Wpl.z are
the plastic modulii of section about Y and Z axes respectively. Ky, Kz

and KLT are parameters given by Eqs. (21.a),(21.b).

χy;z;LT ¼ 1

ϕy;z;LT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
y;z;LT− λ̄

2
y;z;LT

q ≤ 1:0 ð20:aÞ

ϕy;z;LT ¼ 0:5 1þαy;z;LT λ̄y;z;LT−0:2
� �

þ λ̄
2
y;z;LT

� �
ð20:bÞ

λ̄y;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βAA fy
Ncrðy;zÞ

s
ð20:cÞ

λ̄LT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βw Wply fy

Mcr

s
ð20:dÞ

βA and βw are section parameters, equal 1.0 for section of class 1 and
2. αy, αz and αLT are imperfection parameters, given by; αy=0.21,
αz=0.34 and αLT=0.21.

Ky;z ¼ 1−
μy;zNSd

χy;z A fy
≤ 1:5 ð21:aÞ

KLT ¼ 1− μLTNSd

χz A fy
≤ 1:0 ð21:bÞ

μ y;z ¼ λ̄y;z 2βMy;z−4:0
� �

þ Wpl:y;z−Wel:y;z

Wel:y;z

 !
≤ 0:9 ð21:cÞ

μLT ¼ 0:15 λ̄zβM:LT−0:15≤ 0:9 ð21:dÞ

β is an equivalent uniform moment factor for flexural buckling as
per Fig. 5.5.3 of the EC3.

Figs. 11 and 12 show comparisons between the proposed design
method and the design methods adopted by the international codes
of practice for two different sections and spans. The first section
(Fig. 11) has; bf=200 mm, tf=16 mm, dw=600 mm, tw=8 mm,
with lengths L=4.0 m, 8.0 m, 12.0 m and 16.0 m. The second section
(Fig. 12) has bf=150 mm, tf=12 mm, dw=500 mm, tw=10 with
lengths L=3.0 m, 6.0 m, 9.0 m and 12.0 m.
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Fig. 11. Comparison between the proposed design method and the design codes methods for the first I-section, bf=200 mm, tf=16 mm, dw=600 mm, tw=8 mm, L=4, 8, 12 and
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From Figs. 11 and 12, it can be concluded that the curvature of the
proposed interaction curve is not constant, i.e., for short columns the
interaction curve is almost straight line that is very close to the British
standard equation, and for long columns the curvature increases and
the deviation from the British standard increases as well. The BS5950
interaction curve is always conservative compared to the analytical
method. However, the difference between the BS5950 equation and
the proposed design method is minimal for short columns, and it in-
creases with increasing the column length. For a column having the
first cross section, and column height of 4.0 m, the result obtained
by the BS5950 are almost coincidence with those of the proposed
method.

The bi-linear interaction approach adopted by the AISC and ECP
are non-conservative for short column length, as can be concluded
from Fig. 11 for L=4.0 m and Fig. 12 for L=3.0 m. Even for longer
spans, the AISC/ECP results are also non-conservative compared to
the analytical method, for lower axial force (Pu/Puob0.3). The AISC/
ECP design method is conservative for relatively higher axial load
(Pu/PuoN0.3).

The EC3 interaction approach has no constant curvature as those
of the BS5950 and AISC/ECP approaches. That results in a good agree-
ment between the interaction charts obtained from the EC3 approach
and from the proposed design method. As can be concluded from
Figs. 11 and 12, the interaction curve of the EC3 and proposed method
are almost straight lines for short columns and their results are very
close to those of the BS5950. For long columns, the curvature of the
interaction curves obtained from EC3 and proposed method increase,
but still very close to each other. This means that, the EC3 interaction
approach is the most dynamic and the most accurate among the dif-
ferent approaches adopted by the design codes of practice.
6. Conclusions

From the current study, the following concluding remarks can be
drawn:

1) Linear elastic interactive buckling in beam columns has been inves-
tigated using the finite element eigen-value analysis in comparison
with the closed form solution available in literatures. Results of the
finite element analysis were found to be in a very good agreement
with the theoretical solution.

2) An analytical model based on Young's equation and similar to
Perry formulation has been developed to predict the ultimate re-
sistance of beam columns undergoing interactive buckling. This
model takes into account the level of initial imperfection.
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Fig. 12. Comparison between the proposed design method and the design codes methods for the second I-section, bf=150 mm, tf=12 mm, dw=500 mm, tw=10 mm, L=3, 6, 9
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3) Finite element non-linear elasto-plastic analysis has been carried
out using ANSYS 5.4 Program to validate the developed analytical
model. It has been noticed that there is good agreement between
the developed model and the finite element analysis for the inves-
tigated cases, for the ultimate resistance, force–displacement his-
tory and stress distribution at first yield, Figs. 7, 8, 9 and 10.

4) Interactive approaches adopted by the AISC, ECP, BS5950, and
EC3 codes were investigated and compared with the finite ele-
ment non-linear analysis as well as with the developed analytical
model. The AISC-LRFD and ECP-LRFD use the same bilinear inter-
active approach. This approach gives conservative resistance for
relatively long columns and for large normal force (Pu/PuoN0.35),
while for short columns and relatively small values of normal
force (Pu/Puob0.35) the estimated strength is non-conservative.
The BS5950 employs a straight line interactive approach which
is always conservative compared to all other approaches. The
EC3 interactive approach is the most flexible and most suitable
approach that is capable to accurately predict the interactive re-
sistance for all spans at all levels of eccentricity.

5) It has been shown that the developed analytical model accurately
predicts the interactive strength compared to the finite element
non-linear analysis and to the EC3 design approach. This model
is still simple and applicable, as it implies the solution of a second
order equation that can be achieved using a simple calculator. That
means, the developed model is a rational but simple design tool.
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